
Refactoring Legacy Code

@alvarobiz, 2015-06-29

INTRODUCTION

TO LEGACY CODE

What is legacy code

[…] legacy code as
code without tests. It is
a good working
definition, and it points
to a solution […]

 M Feathers, in the preface of Working effectively
with legacy code

What is legacy code (II)

Legacy code is code without

tests that provide trust to all

your stakeholders

What is tested code

Trust (reliable)

Cheap to modify

CHANGING

LEGACY CODE

How to get from A to B

Shortest

Safest

Any long-lived software

0% 20% 40% 60% 80% 100%

Features/ LoC

To Keep To Change

How to change from A to B

Keep old, risk new

Risk old, keep new

Any long-lived software (II)

0% 20% 40% 60% 80% 100%

Features/ LoC

To Keep To Change

THE

LEGACY CODE
 CHANGE

ALGORITHM

The Legacy Code Change Algorithm

Identify change points.

Find test points.

Break dependencies.

Write tests.

Make changes and refactor.

Source: [Feathers04], Ch 2: Working with Feedback

Legacy Code Change, example

Example: Ugly Trivia

We want to remove the

direct printing to the console
(System.out.printXXX)

https://github.com/jbrains/trivia

The Legacy Code Change Algorithm

Identify change points.

Find test points.

Break dependencies.

Write tests.

Make changes and refactor.

Source: [Feathers04], Ch 2: Working with Feedback

Change points

All direct invocations to

System.out.printXXX

The Legacy Code Change Algorithm

Identify change points.

Find test points.

Break dependencies.

Write tests.

Make changes and refactor.

Source: [Feathers04], Ch 2: Working with Feedback

Test points

The console output

The Legacy Code Change Algorithm

Identify change points.

Find test points.

Break dependencies.

Write tests.

Make changes and refactor.

Source: [Feathers04], Ch 2: Working with Feedback

Breaking dependencies

Are the execution

reproducible?

The Legacy Code Change Algorithm

Identify change points.

Find test points.

Break dependencies.

Write tests.

Make changes and refactor.

Source: [Feathers04], Ch 2: Working with Feedback

Writing tests

Capture the console output

Save and verify it

automatically

The Legacy Code Change Algorithm

Identify change points.

Find test points.

Break dependencies.

Write tests.

Make changes and refactor.

Source: [Feathers04], Ch 2: Working with Feedback

Making changes

Global search and replace

“System.out.println” for “log”

into an object

Verify, commit

Refactoring

Inject the logging

collaborator

Verify, commit

Refactoring

DRY on the messages

Verify, commit

The Legacy Code Change Algorithm

Identify change points.

Find test points.

Break dependencies.

Write tests.

Make changes and refactor.

Source: [Feathers04], Ch 2: Working with Feedback

The Legacy Code Change Algorithm

Rewriting Adapting Writing

Cost

UNDERSTANDING

LEGACY CODE

Sensing

[S]ense when we can’t

access values our code

computes

Source: [Feathers04]:

Chapter 3: Sensing and Separation

Separating

[S]eparate when we can’t

even get a piece of code

into a test harness to run.

Source: [Feathers04]:

Chapter 3: Sensing and Separation

Solutions

Fake Objects

Mock Objects

Seams

Dependency breaking

Source: [Feathers04]:

Chapter 3: Sensing and Separation

EXPERIENCES

WITH

LEGACY CODE

Motivation (I)

Motivation (II)

I have nothing to

offer but blood, toil,

tears and sweat.

W. Churchill

https://en.wikipedia.org/wiki/Blood,_toil,_tears,_and_sweat

How to get from A to B

One step at a time

How to get from A to B

Low-hanging fruit

How to get from A to B

Refactor relentlessly

How to get from A to B

Do not stop the

presses, prefer

along the way

How to get from A to B

Make it usable, then

forget for a while

GETTING

(PROFESSIONAL)

HELP

Bibliography

 [Feathers04]: Feathers, M. Working Effectively

with Legacy Code, ISBN-13: 007-6092025986.

Amazon

 [Refactoring]: Fowler, M with Beck, Brant, Opdyke,

and Roberts. Refactoring: Improving the Design of

Existing Code,ISBN-13: 978-0201485677 Official

page

 [Kerievsky04]: Kerievsky, J. Refactoring to Patterns.

ISBN-13: 078-5342213355 Official page

http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052
http://martinfowler.com/books/refactoring.html
http://martinfowler.com/books/refactoring.html
http://martinfowler.com/books/refactoring.html
http://industriallogic.com/xp/refactoring/

