
Refactoring Legacy Code

@alvarobiz, 2015-06-29

INTRODUCTION

TO LEGACY CODE

What is legacy code

[…] legacy code as
code without tests. It is
a good working
definition, and it points
to a solution […]

 M Feathers, in the preface of Working effectively
with legacy code

What is legacy code (II)

Legacy code is code without

tests that provide trust to all

your stakeholders

What is tested code

Trust (reliable)

Cheap to modify

CHANGING

LEGACY CODE

How to get from A to B

Shortest

Safest

Any long-lived software

0% 20% 40% 60% 80% 100%

Features/ LoC

To Keep To Change

How to change from A to B

Keep old, risk new

Risk old, keep new

Any long-lived software (II)

0% 20% 40% 60% 80% 100%

Features/ LoC

To Keep To Change

THE

LEGACY CODE
 CHANGE

ALGORITHM

The Legacy Code Change Algorithm

Identify change points.

Find test points.

Break dependencies.

Write tests.

Make changes and refactor.

Source: [Feathers04], Ch 2: Working with Feedback

Legacy Code Change, example

Example: Ugly Trivia

We want to remove the

direct printing to the console
(System.out.printXXX)

https://github.com/jbrains/trivia

The Legacy Code Change Algorithm

Identify change points.

Find test points.

Break dependencies.

Write tests.

Make changes and refactor.

Source: [Feathers04], Ch 2: Working with Feedback

Change points

All direct invocations to

System.out.printXXX

The Legacy Code Change Algorithm

Identify change points.

Find test points.

Break dependencies.

Write tests.

Make changes and refactor.

Source: [Feathers04], Ch 2: Working with Feedback

Test points

The console output

The Legacy Code Change Algorithm

Identify change points.

Find test points.

Break dependencies.

Write tests.

Make changes and refactor.

Source: [Feathers04], Ch 2: Working with Feedback

Breaking dependencies

Are the execution

reproducible?

The Legacy Code Change Algorithm

Identify change points.

Find test points.

Break dependencies.

Write tests.

Make changes and refactor.

Source: [Feathers04], Ch 2: Working with Feedback

Writing tests

Capture the console output

Save and verify it

automatically

The Legacy Code Change Algorithm

Identify change points.

Find test points.

Break dependencies.

Write tests.

Make changes and refactor.

Source: [Feathers04], Ch 2: Working with Feedback

Making changes

Global search and replace

“System.out.println” for “log”

into an object

Verify, commit

Refactoring

Inject the logging

collaborator

Verify, commit

Refactoring

DRY on the messages

Verify, commit

The Legacy Code Change Algorithm

Identify change points.

Find test points.

Break dependencies.

Write tests.

Make changes and refactor.

Source: [Feathers04], Ch 2: Working with Feedback

The Legacy Code Change Algorithm

Rewriting Adapting Writing

Cost

UNDERSTANDING

LEGACY CODE

Sensing

[S]ense when we can’t

access values our code

computes

Source: [Feathers04]:

Chapter 3: Sensing and Separation

Separating

[S]eparate when we can’t

even get a piece of code

into a test harness to run.

Source: [Feathers04]:

Chapter 3: Sensing and Separation

Solutions

Fake Objects

Mock Objects

Seams

Dependency breaking

Source: [Feathers04]:

Chapter 3: Sensing and Separation

EXPERIENCES

WITH

LEGACY CODE

Motivation (I)

Motivation (II)

I have nothing to

offer but blood, toil,

tears and sweat.

W. Churchill

https://en.wikipedia.org/wiki/Blood,_toil,_tears,_and_sweat

How to get from A to B

One step at a time

How to get from A to B

Low-hanging fruit

How to get from A to B

Refactor relentlessly

How to get from A to B

Do not stop the

presses, prefer

along the way

How to get from A to B

Make it usable, then

forget for a while

GETTING

(PROFESSIONAL)

HELP

Bibliography

 [Feathers04]: Feathers, M. Working Effectively

with Legacy Code, ISBN-13: 007-6092025986.

Amazon

 [Refactoring]: Fowler, M with Beck, Brant, Opdyke,

and Roberts. Refactoring: Improving the Design of

Existing Code,ISBN-13: 978-0201485677 Official

page

 [Kerievsky04]: Kerievsky, J. Refactoring to Patterns.

ISBN-13: 078-5342213355 Official page

http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052
http://martinfowler.com/books/refactoring.html
http://martinfowler.com/books/refactoring.html
http://martinfowler.com/books/refactoring.html
http://industriallogic.com/xp/refactoring/

